Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.622
1.
BMJ Case Rep ; 17(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38724216

A man in his 50s was diagnosed with solar urticaria following monochromated light testing that demonstrated exquisite photosensivity to ultraviolet (UV) A, UV B (UVB) and visible light.Treatment options for this photodermatosis are limited; UVB phototherapy is one modality that can be appropriate in some patients. This is administered at very low doses in a controlled environment to induce skin hardening.1 To self-treat his condition, the patient used a commercial sunbed on two occasions several days apart. He noted an immediate flare of solar urticaria after first use with associated dizziness. Following the second use, he felt generally unwell and was witnessed to lose consciousness and displayed jerky movements of his limbs while a passenger in a car. Investigations including a head MRI and an EEG were normal; an anoxic seizure caused by a flare of solar urticaria was later confirmed.Solar urticaria is a rare photodermatosis that is poorly understood and difficult to treat. The condition has a significant impact on the quality of life of patients. Severe cases can be associated with systemic symptoms that could be life-threatening.


Photosensitivity Disorders , Sunlight , Ultraviolet Rays , Urticaria , Humans , Male , Urticaria/etiology , Middle Aged , Ultraviolet Rays/adverse effects , Photosensitivity Disorders/etiology , Sunlight/adverse effects , Ultraviolet Therapy/methods , Ultraviolet Therapy/adverse effects , Urticaria, Solar
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731895

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
3.
Harefuah ; 163(5): 295-297, 2024 May.
Article He | MEDLINE | ID: mdl-38734942

INTRODUCTION: During the global outbreak of coronavirus disease 2019 pandemic, people sought ways to disinfect their domestic and public surroundings. One of the sanitation options included the usage of ultraviolet-C (UVC) lamps since UVC radiation has been shown to effectively inactivate the SARS-Coronavirus. UVC radiation may also be effective against the SARS-CoV-2 virus. Here we report four cases of bilateral photokeratitis due to the improper usage of UV lamps during the first outbreak of COVID-19 in Israel. METHODS: We collected 4 case reports from patients who were diagnosed with bilateral photokeratitis due to improper usage of UV lamps in their domestic environment from May to December 2020 during the first outbreak of COVID-19 in Israel. RESULTS: A total of four patients presented with signs and symptoms of bilateral photokeratitis after exposure to UV lamps. DISCUSSION: Acute exposure of UVC to the cornea may cause "burns", known as photokeratitis. The signs of photokeratitis usually appear a few hours after the exposure. Precautious steps to educate the population must include using protective eyewear in any exposure to UV light and avoiding the use of germicidal lamps in public locations with exposure to the population.


COVID-19 , Keratitis , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , COVID-19/prevention & control , Male , Israel/epidemiology , Female , Keratitis/etiology , Middle Aged , Adult
4.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709706

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Fibroblasts , Filaggrin Proteins , Matrix Metalloproteinase 1 , NF-E2-Related Factor 2 , Tumor Necrosis Factor-alpha , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , Matrix Metalloproteinase 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Sunscreening Agents/administration & dosage , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Amino Acids/administration & dosage , Amino Acids/pharmacology , Amino Acids/chemistry , Interleukin-1alpha/metabolism , Histamine/blood , Skin Cream/administration & dosage , Biomarkers/metabolism , Collagen Type I , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Pyrimidine Dimers , Cells, Cultured
5.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Article En | MEDLINE | ID: mdl-38695592

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Apoptosis , Cell Proliferation , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Hematopoietic Stem Cells/radiation effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/metabolism , Apoptosis/radiation effects , Hematopoiesis/radiation effects , Cell Proliferation/radiation effects , Cell Line, Tumor , Ultraviolet Rays/adverse effects , Mice , Mice, Inbred C57BL , Time Factors , Ultraviolet Therapy
6.
FASEB J ; 38(9): e23641, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690717

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Acetylcholinesterase , Keratinocytes , MicroRNAs , Skin , Ultraviolet Rays , Urticaria , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Keratinocytes/metabolism , Keratinocytes/radiation effects , Ultraviolet Rays/adverse effects , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Skin/radiation effects , Skin/metabolism , Urticaria/metabolism , Urticaria/etiology , Mice , Acetylcholine/metabolism , Male
7.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731413

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Arbutin , Skin Aging , Ultraviolet Rays , Arbutin/pharmacology , Ultraviolet Rays/adverse effects , Animals , Skin Aging/drug effects , Skin Aging/radiation effects , Mice , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Humans , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Skin/pathology
8.
Aging (Albany NY) ; 16(8): 7153-7173, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38643459

Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.


Coumaric Acids , Drug Synergism , HaCaT Cells , Oxidative Stress , Skin Aging , Ultraviolet Rays , Vitamin A , Humans , Skin Aging/drug effects , Skin Aging/radiation effects , Coumaric Acids/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Ultraviolet Rays/adverse effects , Vitamin A/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , Antioxidants/pharmacology
9.
Aging (Albany NY) ; 16(8): 6673-6693, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38683123

PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.


Cell Proliferation , Cellular Senescence , Endothelial Cells , Ultraviolet Rays , Humans , Cellular Senescence/radiation effects , Ultraviolet Rays/adverse effects , Cell Proliferation/radiation effects , Endothelial Cells/radiation effects , Endothelial Cells/metabolism , Endothelium, Corneal/radiation effects , Endothelium, Corneal/metabolism , Cells, Cultured , Proteomics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics
11.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619007

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Solar Energy , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Climate Change , Environmental Pollution , Weather
12.
Eur J Dermatol ; 34(1): 26-30, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38557455

Gel manicures have become part of a popular personal care service in the last two decades due to increased longevity of the polish and the added strength to the nail plate. Prolonged exposure to nail ultraviolet (UV) lamps is required to cure the gel polish. Despite the increased use of UV nail lamps, there is limited consensus in the literature on the risk of skin malignancy associated with UV nail lamps. The objective of this article was to provide a systematic review of the risk of skin malignancy associated with the use of UV nail lamps and to synthesize evidence-based recommendations on their safe usage. A systematic review of the literature was conducted on the databases, Medline and Embase, in accordance with PRISMA guidelines. The search yielded 2,331 non-duplicate articles. Nine were ultimately included, of which three were case reports, one was a cross-sectional study, and five were experimental studies. The risk of bias per the Joanna Briggs Institute guidelines was high or unclear, likely due to the number of case reports included. Prolonged and repeated exposure to UV nail lamps may pose a low risk of skin cancer. It is important to note that the available evidence is weak, and patients should be informed about the limited data to make their own decisions. Dermatologists and other healthcare providers should be updated with the latest evidence to address patients' concerns about gel manicures and suggest practices which can effectively reduce the risk of cutaneous malignancy associated with gel manicures, such as the use of UV-blocking gloves or properly applied sunscreens.


Beauty , Skin Neoplasms , Humans , Cross-Sectional Studies , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Nails/pathology , Sunscreening Agents , Ultraviolet Rays/adverse effects
13.
Med Arch ; 78(2): 88-91, 2024.
Article En | MEDLINE | ID: mdl-38566862

Background: Prolonged exposure to sunlight is known to induce photoaging of the skin, leading to various skin changes and disorders, such as dryness, wrinkles, irregular pigmentation, and even cancer. Ultraviolet A (UVA) and ultraviolet B (UVB) radiation are particularly responsible for causing photoaging. Objective: This study aims to identify and compare photoaging rat models exposed to UVA and UVB. Methods: This research method compared macroscopic (scoring degree of wrinkling) and microscopic (histology) signs and symptoms on skin samples of rat exposed to UVA and UVB for 4 weeks at a radiation dose of 840mJ/cm2. Results: The results of this study indicated that the degree of wrinkling was highest in rat skin exposed to UVB rays by 51% (p<0.05). UVB histological results showed that the epidermis layer (40 µm, p<0.05) was thickened and the dermis layer (283 µm, p<0.05) was thinned in the skin of mice exposed to UVB light. The UVB group, showed the density of collagen in the dermis with a mean value of 55% (p<0.05). Conclusion: Our results suggest that short-term exposure to UVB radiation (in the acute, subacute or subchronic phase) induces more rapid and pronounced damage to rat skin when compared to UVA radiation exposure.


Skin Aging , Rats , Mice , Animals , Skin/pathology , Ultraviolet Rays/adverse effects , Sunlight
14.
Front Immunol ; 15: 1384606, 2024.
Article En | MEDLINE | ID: mdl-38660315

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Caspase 8 , Interferon-alpha , Keratinocytes , Animals , Mice , Apoptosis , Caspase 8/metabolism , Caspase 8/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-alpha/metabolism , Keratinocytes/metabolism , Keratinocytes/radiation effects , Mice, Inbred C57BL , Ultraviolet Rays/adverse effects
15.
Photodermatol Photoimmunol Photomed ; 40(3): e12961, 2024 May.
Article En | MEDLINE | ID: mdl-38676310

BACKGROUND: Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES: To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS: To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS: Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION: Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.


Niacinamide , Niacinamide/analogs & derivatives , Pyridinium Compounds , Stilbenes , Ultraviolet Rays , Animals , Niacinamide/pharmacology , Pyridinium Compounds/pharmacology , Mice , Ultraviolet Rays/adverse effects , Stilbenes/pharmacology , Female , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dermatitis, Contact/etiology
16.
Redox Biol ; 72: 103135, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565069

Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms. Thus, oxidative stress is considered to contribute to melanomagenesis, particularly in people with pheomelanic pigmentation. The melanocortin 1 receptor gene (MC1R) is a major melanoma susceptibility gene. Frequent MC1R variants (varMC1R) associated with fair skin and red or yellow hair color display hypomorphic signaling to the cAMP pathway and are associated with higher melanoma risk. This association is thought to be due to production of photosensitizing pheomelanins as well as deficient induction of DNA damage repair downstream of varMC1R. However, the data on modulation of oxidative DNA damage repair by MC1R remain scarce. We recently demonstrated that varMC1R accelerates clearance of reactive oxygen species (ROS)-induced DNA strand breaks in an AKT-dependent manner. Here we show that varMC1R also protects against ROS-dependent formation of 8-oxodG, the most frequent oxidative DNA lesion. Since the base excision repair (BER) pathway mediates clearance of these DNA lesions, we analyzed induction of BER enzymes in human melanoma cells of varMC1R genotype. Agonist-mediated activation of both wildtype (wtMC1R) and varMC1R significantly induced OGG and APE-1/Ref1, the rate-limiting BER enzymes responsible for repair of 8-oxodG. Moreover, we found that NADPH oxidase (NOX)-dependent generation of ROS was responsible for AKT activation and oxidative DNA damage repair downstream of varMC1R. These observations provide a better understanding of the functional properties of melanoma-associated MC1R alleles and may be useful for the rational development of strategies to correct defective varMC1R responses for efficient photoprotection and melanoma prevention in fair-skinned individuals.


DNA Damage , DNA Repair , Melanoma , Oxidation-Reduction , Oxidative Stress , Receptor, Melanocortin, Type 1 , Signal Transduction , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Humans , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Melanocytes/metabolism
17.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Article En | MEDLINE | ID: mdl-38565040

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Caffeic Acids , Keratinocytes , Lactates , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Skin , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Signal Transduction/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Nucleotidyltransferases/metabolism , Caffeic Acids/pharmacology , Humans , Mice , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Skin Aging/drug effects , Skin Aging/radiation effects , DNA Damage/drug effects , Interferon Regulatory Factor-3/metabolism , Female , RAW 264.7 Cells
19.
Sci Rep ; 14(1): 6604, 2024 03 19.
Article En | MEDLINE | ID: mdl-38503785

The media and even the specialized literature report that the ultraviolet (UV) protection for sunglasses is critical, on the grounds that sunglasses can have a counter effect if the lenses do not provide adequate UV protection. They reason that the primary and natural mechanism is that the pupil of the eye contracts to attenuate radiation and protect the inner eye under sun exposure. Therefore, if dark lenses do not provide appropriate UV protection, there is an increased UV incidence in the inner eye due to pupil dilation, which enhances the adverse effects and impacts the ocular tissues more severely than in situations without UV protection. However, no existing literature properly quantified or supported this argument. In this work, the influx of solar UV throughout the pupil of the eye was calculated in two situations: when a person wear sunglasses and when he/she does not. In both situations, the pupil dilation and the field of view (squint) were considered with their dependence on the brightness of the ambient, calculated by modeling the solar irradiation. Finally, it was assessed whether sunglasses with poor UV protection actually increase the UV influx throughout the dilated pupil compared to the non-dilated pupil. A set of 214 sunglasses lenses were tested and the results show that pupil dilation does not play an important role in the UV influx throughout the pupil. It was observed that the FOV is the main player, surpassing the pupil size contribution by up to 314.3%, disproving the common explanation. Because of the major role of the FOV, our results show that sunglasses with UV-A protection below 86% may have a slight potential to increase hazards to the eye compared to not wearing sunglasses at all. These results can have direct impact on sunglasses standards regarding the UV protection linked to the category of the lenses.


Sunlight , Ultraviolet Rays , Female , Humans , Ultraviolet Rays/adverse effects , Dilatation , Ophthalmologic Surgical Procedures , Eyeglasses
20.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Article En | MEDLINE | ID: mdl-38499149

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Autophagy , Inflammasomes , Keratinocytes , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Ultraviolet Rays , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Autophagy/radiation effects , Ultraviolet Rays/adverse effects , Inflammasomes/metabolism , Mitochondria/metabolism , Mitochondria/radiation effects , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Beclin-1/metabolism , Beclin-1/genetics
...